SM223 – Calculus III with Optimization Assoc. Prof. Nelson Uhan

Lesson 21. The Chain Rule

1 This lesson

- Two special cases of the chain rule
- Tree diagrams and the general version of the chain rule

2 Case 1

- Let z = f(x, y) be a function of 2 variables
- Let *x* and *y* be functions of 1 variable: x = g(t) and y = h(t)

 \Rightarrow *z* is indirectly a function of *t*: *z* = *f*(*g*(*t*), *h*(*t*))

- Can we find the derivative of *z* with respect to *t*?
- Chain rule (Case 1):

Example 1. Let $z = xy - x^2y$, $x = t^2 + 1$, and y = t - 1. Find dz/dt.

Example 2. Let $z = x^2y + 3xy^4$, $x = \sin 2t$, and $y = \cos t$. Find dz/dt when t = 0.

Example 3. A person's body-mass index (BMI) is given by $B(h, w) = 700w/h^2$, where *h* is the person's height in inches and *w* is the person's weight in pounds.

Suppose MIDN Slim is currently 70 inches tall and 140 pounds. MIDN Slim is growing at a rate of 0.1 inches per year, and is gaining weight at a rate of 2 pounds per year. Find the rate at which MIDN Slim's BMI is changing per year.

3 Case 2

- Let z = f(x, y) be a function of 2 variables
- Let *x* and *y* be functions of 2 variables: x = g(s, t) and y = h(s, t)
 - \Rightarrow *z* is indirectly a function of *s* and *t*: *z* = *f*(*g*(*s*, *t*), *h*(*s*, *t*))
- We can find the derivative of *z* with respect to *s* and *t*
- Chain rule (Case 2):

Example 4. Let $z = \sin x \cos y$, $x = st^2$, $y = s^2 t$. Find $\partial z / \partial s$ and $\partial z / \partial t$.

Example 5. Suppose *f* is a differentiable function of *x* and *y*, and $g(u, v) = f(e^u + \sin v, e^u + \cos v)$. Use the following table to compute $g_u(0,0)$ and $g_v(0,0)$.

	f	g	f_x	f_y
(0, 0)	1	4	8	0
(1,2)	4	1	3	6

4 Tree diagrams

- How can we remember the more complex chain rule (i.e. Case 2)?
- Draw a tree diagram:

- To get $\partial z / \partial s$, follow all the paths from z to s:
- This idea can be extended in general to functions of 3 or more variables

Example 6. Write out the chain rule for the case where z = f(w, x, y), w = g(s, t), x = h(s, t), $y = \ell(s, t)$.

Example 7. Write out the chain rule for the case where w = f(x, y, z), x = g(t), y = h(t), $z = \ell(t)$.

Example 8. Let $w = \ln(\sqrt{x^2 + y^2 + z^2})$, $x = \sin t$, $y = \cos t$, z = t. Find dw/dt.

Example 9. The length ℓ , width w, and height h of a box change with time. At a certain instant the dimensions are $\ell = 1 \text{ m}$, w = 2 m, and h = 2 m. ℓ and w are increasing at a rate of 2 m/s while h is decreasing at a rate of 3 m/s. Find the rate at which the length of the diagonal is changing at that instant.