Lesson 21. The Chain Rule

1 This lesson

- Two special cases of the chain rule
- Tree diagrams and the general version of the chain rule

2 Case 1

- Let $z=f(x, y)$ be a function of $\underline{2}$ variables
- Let x and y be functions of 1 variable: $x=g(t)$ and $y=h(t)$
$\Rightarrow z$ is indirectly a function of $t: z=f(g(t), h(t))$
- Can we find the derivative of z with respect to t ?

- Chain rule (Case 1):

Example 1. Let $z=x y-x^{2} y, x=t^{2}+1$, and $y=t-1$. Find $d z / d t$.

Example 2. Let $z=x^{2} y+3 x y^{4}, x=\sin 2 t$, and $y=\cos t$. Find $d z / d t$ when $t=0$.

Example 3. A person's body-mass index (BMI) is given by $B(h, w)=700 w / h^{2}$, where h is the person's height in inches and w is the person's weight in pounds.

Suppose MIDN Slim is currently 70 inches tall and 140 pounds. MIDN Slim is growing at a rate of 0.1 inches per year, and is gaining weight at a rate of 2 pounds per year. Find the rate at which MIDN Slim's BMI is changing per year.

3 Case 2

- Let $z=f(x, y)$ be a function of 2 variables
- Let x and y be functions of 2 variables: $x=g(s, t)$ and $y=h(s, t)$
$\Rightarrow z$ is indirectly a function of s and $t: z=f(g(s, t), h(s, t))$
- We can find the derivative of z with respect to s and t
- Chain rule (Case 2):
\square

Example 4. Let $z=\sin x \cos y, x=s t^{2}, y=s^{2} t$. Find $\partial z / \partial s$ and $\partial z / \partial t$.

Example 5. Suppose f is a differentiable function of x and y, and $g(u, v)=f\left(e^{u}+\sin v, e^{u}+\cos v\right)$. Use the following table to compute $g_{u}(0,0)$ and $g_{v}(0,0)$.

	f	g	f_{x}	f_{y}
$(0,0)$	1	4	8	0
$(1,2)$	4	1	3	6

4 Tree diagrams

- How can we remember the more complex chain rule (i.e. Case 2)?
- Draw a tree diagram:

- To get $\partial z / \partial s$, follow all the paths from z to s :
- This idea can be extended in general to functions of 3 or more variables

Example 6. Write out the chain rule for the case where $z=f(w, x, y), w=g(s, t), x=h(s, t), y=\ell(s, t)$.

Example 7. Write out the chain rule for the case where $w=f(x, y, z), x=g(t), y=h(t), z=\ell(t)$.

Example 8. Let $w=\ln \left(\sqrt{x^{2}+y^{2}+z^{2}}\right), x=\sin t, y=\cos t, z=t$. Find $d w / d t$.

Example 9. The length ℓ, width w, and height h of a box change with time. At a certain instant the dimensions are $\ell=1 \mathrm{~m}, w=2 \mathrm{~m}$, and $h=2 \mathrm{~m}$. ℓ and w are increasing at a rate of $2 \mathrm{~m} / \mathrm{s}$ while h is decreasing at a rate of $3 \mathrm{~m} / \mathrm{s}$. Find the rate at which the length of the diagonal is changing at that instant.

